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Nonlinear gyrokinetic equations for low-frequency
electromagnetic waves in general plasma equilibria

E. A. Frieman® and Liu Chen

Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08544

(Received 6 October 1981; accepted 6 January 1982)

A nonlinear gyrokinetic formalism for low-frequency (less than the cyclotron frequency) microscopic
electromagnetic perturbations in general magnetic field configurations is developed. The nonlinear equations
thus derived are valid in the strong-turbulence regime and contain effects due to finite Larmor radius, plasma
inhomogeneities, and magnetic field geometries. The specific case of axisymmetric tokamaks is then
considered and a model nonlinear equation is derived for electrostatic drift waves. Also, applying the
formalism to the shear Alfvén wave heating scheme, it is found that nonlinear ion Landau damping of kinetic
shear-Alfvén waves is modified, both qualitatively and quantitatively, by the diamagnetic drift effects. In
particular, wave energy is found to cascade in wavenumber instead of frequency.

I. INTRODUCTION

Electromagnetic instabilities with frequencies lower
than the ion-cyclotron frequency and perpendicular (to
the magnetic field) wavelengths comparable to the ion
Larmor radius are believed to be important for the
transport processes in magnetically confined plasmas.
One complicating factor in analyzing these low-fre-
quency microscopic instabilities, which are driven by
plasma inhomogeneities and shall be loosely termed
kinetic drift-Alfvén waves, is that the destabilizing
mechanisms are sensitive to effects associated with
magnetic field configurations such as magnetic shear,
magnetic gradient and curvature drifts, and trapped
particles. To overcome this difficulty, Rutherford and
Frieman' as well as Taylor and Hastie? have, indepen-
dently, developed a formalism, now known as the gyro-
kinetic formalism, to treat the linear aspects of kinetic
drift waves in general magnetic configurations. Re-
cently, the linear gyrokinetic formalism has been ex-
tended to include electromagnetic perturbations®:* as-
sociated with shear and compressional Alfvén waves.
Since the transport induced by the instabilities is ulti-
mately determined by the nonlinear processes, it is,
therefore, desirable to further extend the gyrokinetic
formalism into the nonlinear regime while retaining
crucial features such as finite Larmor radius and arbi-~
trary magnetic field configurations. This constitutes
the principal motivation of the present research.

In this work, we develop the nonlinear gyrokinetic
formalism based on a multiple-scale expansion;® that is,
microscopic fluctuations vary on the fast (linear) time
scale (i.e., typically, the diamagnetic drift frequency
time scale), while macroscopic quantities are assumed
to vary on the slow transport time scale. Here, the
cyclotron frequency time scale is the fastest time
scale. Furthermore, consistent with experimental
observations,®” our formulation allows nonlinear time
scales to be comparable to the linear ones and, hence,
the results are valid in the strong-turbulence regime.
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Section II contains the theoretical formulation and
derivations of the nonlinear gyrokinetic equations.
The specific case of axisymmetric tokamaks is further
considered in Sec. II using the ballooning-mode repre-
sentation®™° and a nonlinear drift-wave equation is de-
rived in a limiting case. Noting that our results are
also applicable to nonlinear heating via externally
launched low-frequency waves, in Sec. IV, we also
consider nonlinear ion Landau damping (ion induced
scattering) of the mode-converted kinetic (shear)
Alfvén waves!® and find that the inclusion of diamag-
netic drift effects modifies, both qualitatively and quan-
titatively, the decay processes. Final conclusions and
discussion are given in Sec. V.

Il. THEORETICAL ANALYSES
A. Guiding-center transformation and the two spatial scales

As in the linear formalism,!+?:3? it is more convenient
to carry out the analysis in the guiding-center phase
space, (X,V), which is related to the particle phase
space, (x,v), via the following guiding-center trans-
formation

X=x+vXe,/, (1)
V=V, Lk, a), (2)

where e=1%/2+¢d,/m, u=12/2B, &, and B are, re-
spectively, the macroscopic (equilibrium) electric po-
tential and magnetic field, 2 =¢B/mc, e,=B/B, « is
the gyrophase, and

v,=v,(e,cosa +e,sing), (3)

with e,, e,, and e, being the local orthogonal unit vec-
tors. Furthermore, noting that perturbations of in-
terest here have perpendicular (to B) wavelengths of the
order of the Larmor radius, p, which is much smaller
than the macroscopic scale length, L, (i.e., Asp/L,
is a small parameter), we may separate physical quan-
tities into microscopic and macroscopic parts by
averaging over the microscopic spatial variations.
Thus,

p=P+5P, (4)

where
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d?xX
p= LTl o, ®
fdleo
(6P)x,, =0 and X,, corresponds to fast perpendicular
spatial variations.

In the (X, V) phase space, the Vlasov equation then
becomes

L, f=-(q/m)(0Rf), (6)
where
L :—a-+%_‘t’.v +ax Vy+u,e - Vy

£= 5t v ot

q 9
+V'(A81+A52)+1_n' (E"Eo)""a—E

+£—E-l%%+%%)+vxovx—ﬂa—i-, ("

Ag, =VXV, (e,/R) Yy, (8)

Ass = (V) = + (V,0) =, (9)
ou da

V.u=-[uv, B+v,V,.e,v,]/B, (10)

v,a=(V.e,) e, +(v,/7)V.e, - (v,Xe,), (11)

6R=0a. V,=ba-V, +b0aXe,/Q-Vy, (12)

6a=0E+VvX6B/c, (13)

E,=-V.$,, e,=-€,sina+e,cosa, and vz=cEXe,/B.
Here, L, contains 3V/d¢ and 9X/d¢ because the macro-

scopic quantities are in general time-dependent. Per-
forming spatial averaging on Eq. (6), we obtain
L F=~(q/mXOR0F)y,,, (14)
and
LOF = —(q/m)(6RF + OROF—(GRGF)XLO). (15)
B. Ordering
To proceed further with Eqs. (14) and (15), we
adopt the following ordering for the microscopic
fluctuations:
13/8¢] _ ~l6F,~|q6<1>,~,63 NEW
IQl ,Peu'vx' F T B ‘U' O(A)y
(16)

where v, is the characteristic (thermal) velocity, and
[0Vx,,| ~O(1). am

For macroscopic quantities, however, since they evolve
on the transport (including that induced by turbulence)
time scale, we take

|o/at|

~O(2\8 18
ST To0), (18)

in addition to
[p¥x|~0M). (19)

We remark that the ordering adopted here is consis-
tent with experimental observations as well as most of
the proposed phenomenological anomalous transport
mechanisms. ®? Furthermore, since the nonlinear
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term, OR6F, is of O(A?), i.e., comparable to the
linear term, L,0F, our ordering, in principle, con-
tains strong-turbulence effects. Also, as will be
shown later, in Eq. (47), the ordering of the transport
time scale, Eq. (18), is consistent with that of the
fluctuations, Eq. (16).

C. Solution of F

Using the small parameter A, we have, with F=
Fo+F +... 1.2

Fy=Fye, u,X,); (20)
ie.,e-VyF =0,
5 o,
~ *fdy” 2 .
B=- V;'Up+f <—%>(vu(v1'vxeu‘vx)""*—’_‘_v ) e”)] , (22)
Vp=Vy+ Vg, (23)
v,=€,X[(v3/2)V,InB + v, Ve, [/Q, (24)

and F, is the o -dependent part of F,. To determine the
a-independent part of F,, one needs to go to O(\?),
where turbulence effects, (6R6F)xm, would also enter.
In fact, following the procedures of neoclassical
theory,'® a formal transport theory including turbulence
could be developed; this is, however, beyond the scope
of the present work and will be left for future investiga-
tions. For the present purpose of obtaining a nonli-
near gyrokinetic equationfrom Eq. (15), knowing F, and

F| is sufficient.

D. Nonlinear gyrokinetic equations

We now concentrate on Eq. (15) for the fluctuating 6F.
Since only terms up to O(X?) are of interest here, the
macroscopic background can be treated as frozen and
L, becomes accurate to O(}),

2
L,~L,= 5 + 0,8, Vg + V. (Ag, +Ng,)

Ctn(shend)
+v,;0-VX-Qi (25)
dx
Following the linear formalism ,3'* we let
OF =(g/m)oF, + 6G , (26)
where
oF, = [%:—a + (6q> - ﬂ%éﬂ) )—B%]FO, 27

in order to remove the O(1) term, GRF;, in Eq. (15).

We note that we have adopted 6 and A as field vari-
ables. Thus, 6B=V_X0A and E = —(V,06¢ + 36A/cdt).
Substituting Eqs. (25) and (26) into Eq. (15), we obtain

L, 6G=~(g/m)R, +R,,), (28)
where R, is the linear term®* given by

Ry=R, +R;,+Ryy+ Ry, (29)
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11:%%-2&;';“‘“'vxl’ﬂoa (30)
8L=5& -v-0A/c, (31)
Y (32)
Ry, = ;gu (at +u,e,- x) 6L, (33)
Ry, = [%(v..e.. +v,) Vy-8pv -V, InB

(V,5) - V08 + 60B). ( i )]—aﬂ (34)

Bau Bou’
1
RM: - Z <1)“(V. Vxeli) - 0A + OA”(V- Veu) 'V

+ (Q/m)eu *
—(VyB) - [Vo(v - 8A) - (v V,)0A]

EOGAH - v||6A||V v, InB

+ Q(Bu,04,), ng) = (35)
R,;=0R,0F —=(0R,0F)y (36)
SR,=0a, vV, + ba,Xe,/Q-V,, (37)
ba,=~V,08 + [V, (v- 0A) - (v, V,)6A)/c, (38)

and (a), =da/%q. Expanding 5G=06G,+ 6G,+... and
noting that the right-hand side of Eq. (28) is of O(\?),
we have, for O(A),

30G,/8a =0. (39)
Gyrophase averaging the O(A?) equation then yields
(Lep)o0Go= = (q/mXR, + Ry (40)
where
(Lepdg=0/8t+ 0,8, Vg +v eV, (41)
and (- - -y, =(1/2m) fz'da(- ..). If we further let
=—(q/m)<t‘>L>,,B—aJL +0H,, (42)

Eq. (40) becomes

(Lg,)aGHO:(——q/m)(S,l+S,2+(R,,,>a), (43)
where
KOL), OF,
S, =—F4 37 % V(GL) Q VXFO, (44)

oF
Slz = Eﬁ {Uu(eu : Vx6L>a ~ U8y VX< 6L>°‘

VL3L), - (v,08),, -
~(V, BV 08), —(v-0A/c) v, -V, InB
+04V8A,/C) o+ V, InB+{(V,B) - [V (v-0A)
—(v:V)0A)/ ), —vllv-V,e,)-0A/0),
—(0A,(v-V,)e, - v/c), — (g/m)e, - ESA,/c) b,  (45)

and, after some algebraic manipulations,

(Rop)a =(ORGOF ) = (ORo[(a/m)OF, + 5Go) e
= -V,(b5L), Xe,/- V,0H, . (46)

—Vpe v.InB
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Here, we have noted that
((BR,OF ) )%, , =0 (47)

Equation (47) indicates that the effect of turbulence on
the o-independent part of F is of O(A3) and, therefore,
consistent with the ordering of the transport time scale,
Eq. (18). Combining Eqs. (43) and (46) gives

— 0 c
L,0H, = [at +uv,.e,-Vy+ <vD+ B e,,XV()(éL)u) . Vn] 8H,

—(g/m)Si+S,). (48)

Equation (48) is the desired nonlinear gyrokinetic equa-
tion. Combining Maxwell’'s equations and 8F, given by
Egs. (26), (42), and (48), the microscopic dynamics is
then, in principle, completely determined.

Since the theoretical analyses employ two spatial
scales, it is instructive to proceed further with the
following WKB ansatz

8F(x,v)= z OF (x,v;k,) exp (i f lOkl . dxl>

kL
- X
=Y OF(X,V;k,) exp(zf kL-dXL—iL(kL)) ,
k)

(49)
k,-vXe,/Q, and 6F as well as k, contain
Equation (48) then reduces to

2 e

| Y 4}

where L(k,) =
slow spatial variations.

0 . = c PR
(at +uv,e,- VX—Hkl-vD) SHyk,)+ 5 oo (kY XK))]

T 5 ‘x'LO ’ 1"
X(8L) ,(k;)0H,(k{) exp (zf (k% +kK7 -k, )+ dX,

=—~(g/m)S;,(k,), (50)
where

(8L) (k) = (83 — ,0A,/ W (¥) + v,d,(¥)8B, /kyc,  (51)

Su(kl):<aai % +ie, xl-‘—.v F)(GDO,(kL). (52)

y=k,v,/Q, and S;,(k,) is of higher order and ignorable
here. Equation (50) and, hence, Eq. (48) show that the
nonlinearity arises from a gyrophase-averaged effec-
tive OE,;,XB- V, coupling; here,

OB, = - V,(0& - v- 0A/cC). (53)

It is interesting to note that the nonlinear polarization
drift is contained, not very obviously, within the finite
Larmor radius corrections in J, and J,. In fact, the
electrostatic nonlinear drift-wave equation first ob-
tained by Hasegawa and Mima’* can be readily derived
from Eq. (50) in the appropriate limits; i.e., adiabatic
electrons and cold fluid ions (Sec. III). Equation (48)
[or Eq. (50)], of course, is much more general and al-
so is not easy to solve. In the next two sections, we
consider more specific applications of the general re-
sults obtained so far.

1. AXISYMMETRIC TOKAMAKS
A. General formulation

Here, we consider the specific case of axisymmetric
tokamaks and, using the ballooning-mode representa-
tion,®19:15 fyrther explore the properties of the nonli-
near gyrokinetic equation, Eq. (48). Thus, employing
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the ¢ (poloidal flux), £ (toroidal angle), and x (poloidal
angle-like) coordinates, we have

B=V EXV Y+ I, X))V, E, (54)
F():Fo(d)’ IJ,E), (55)

oHy= 3 }; oh, (0, v)exp[i (n£ —my +nf°kd¢)] ,

(56)
Ohy (V)= [ a0, OB, 8,92, m(Br), (57)

gn,m(é,,):exp[i(m@" - nfon vd@)] , (58)

v=IJ/R? and J=(V XV £V x)" is the Jacobian.
Equation (48) or, equivalently, Eq. (43) then becomes

° oA ~ 0 v, 0 . -
f de,, g,,'m(en)[<§ + JT; 3 + zkl . VD) Gh’n
o 3,1

3 q

+ L5, ] == LRdmm (59)
where

nB n oy .a
klz .EB—X (e,.Xe,)—nRBx(]: wde—k)e‘ s
- 9F. 8 .nB oF)\ .—

_(3F, 3 0

S’ﬂ‘( % ot '@ azp) °L,, (60)
6L, =J,lyN6& — v,04,/c), +J,lv)v,0b,,/k,c, (61)

1 d © .
(R)o(mm)==5 2. 3 f d@,,.f @By &y
n’_+n" em” I e

=m _ —
xgn"'m" Cn’,n'(éLn’ 6h-rl" - 6Ln” 6h’n’)u’n’,n" ’

(62)
_ S|_| ’ "y __ Bn,n”(fa"" _a_z ' II)
Co=1 (g Xk)) = —2 s azpd©+k E"),
n
(63)
®
Wn,,n,,zexp<if (n’k’+n”k”—nk)dzp), (64)

and, again, y=Fk,v,/Q2. After some manipulations, Eq.
(62) can be shown to be

Bo) o, m) = [ dB g, B, (65)

where

(R-nl)nz_ﬂ Z Wn‘,n" Zexp(_inHZHPQ)
I3

n'sn’

=n
XCpo e f dé,, a(én_én,)f db,.8(8,. - 8, - 21p)

X(8L,.6h,.~ 8L,.0h,), (66)
2r N
Q=(1/2m [ vad, (67)
[0}
and
~ _ Bnn" Q . ., ,)
Cronn= Q (an azp+k ~-k"}). (68)

Combining Eqs. (59) and (65), we finally derive the non-
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linear gyrokinetic equation for axisymmetric tokamaks

(% + 7% 'a_g: + ik, - v,,)dh,,:— %[s," +(Ry),).  (69)
We now make some qualitative remarks. For simpli-
city, we shall ignore global amplitude modulations by
letting k=k'=k"=0 and, hence, C,, ,.<p. For flute-
like modes, which are highly localized about the mode-
rational surfaces, exp(—in”2npQ)=1 and 6k as well as
8L are weakly dependent on §. Therefore, we have,
roughly, (R,;),<2J,p=0; i.e., nonlinear coupling is
much reduced, which may be expected because there
is little overlap between the modes in the y (radial)
coordinate. On the other hand, for modes which are
strongly ballooning, and hence, (6&,0L)8 + p2n)=~0

for p #0; the nonlinear coupling, again, is small. This
is because, in this limit, radial structures are rather
broad and, hence, the SEXB- V, coupling is rendered
ineffective. Thus, qualitatively speaking, Eq. (66)
appears to indicate that the most effective nonlinear
coupling occurs among modes which are moderately
ballooning.

B. Electrostatic drift waves with adiabatic electrons and
cold fluid ions

For simplicity, we assume F, to be a local Maxwel-
lian; i.e.,

F,=F,(¥,¢), (70)

and neglect any equilibrium electric potential $,. Since
electrons are adiabatic, their nonlinear contributions
are negligible and the quasineutrality condition becomes

(1+T)6¢n=2ﬂdeuf dv, 0%, I o(7,) = 07, , (11)
where, 0y,=¢68,/T,, T=T,/T;>1, and J (y;)~1~-v3/4.
Meanwhile, neglecting the ion-sound term, we multiply

the ion equation (69) by J,(7,;) and carry out the velocity
integration to obtain

9 . _ . 2
(a—t +ik, - vd‘) bt =1(1 - b")<'eﬁ— zw*;,.>5¢,.

- £ on [ Bap [ 4,0 ) Roidins
ny

(72)
where, for j=e, i,
T,=€,%(¢5/2)(V,.InB +e, - Ve,)/Q,, (73)
2
_v nB BlnNm
W x4 29] ad) ’ (74)

and b; =kZ2p%/2. In deriving Eq. (72), we have noted that
in the zeroth-order approximation, 8h,,~06#,,F,,. Ex-
panding the J,’s in (R,,),, and using the quasineutrality

condition, Eq. (71), it is then straightforward to derive

AT
<(1 +EpY) T ik -Vt 7""*0) 6¢,

=qaC? Z Wy o Z: exp(~in"21pQ)C,. .
?

n’an*
£
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x [ " ab,. 60, 8,) [ d0,.50,.- 8, 2m)

X p3[(k)? = (k}]04, 04,

where C2=171v%/2 and p,=C,/®;. Equation (75) may be
regarded as the tokamak version of the nonlinear drift-
wave equation of Hasegawa and Mima.'* It contains the
poloidal mode-coupling effects due to the V_B and cur-
vature drifts and employs the ballooning~mode represent-
ation. The assumption of adiabatic electrons and cold
fluid ions thus results in a single nonlinear equation in-
stead of coupled ones, as in more general cases. To
make Eq. (75) more tractable, we further assume con-
centric, circular magnetic surfaces and ignore the glo-
bal wavenumber (k). Equation (75) then reduces to

(75)

((1 + klp,) — 1@, T (8) + iw *,,)(Szp(n, 8)
=7R,8 Z ; exp(—in" 2mpQ)p4(k k. 2TD)
x[(RY Y - (R(P10y(n’, 8)60 (n", 8 + 21p), (76)

where wy,=k,P,Cy/7,, 7;'=|dInN/dr|, k,=nQ/7, Wy
=27 w*,/R S T(aQ/a?')/Q,

Tc::cose+89 sind, (7

B2 =k2(1 + §%6%) (78)

(B] Y =k2(1+ §%9%) (79)
and

(k)2 =R2[1+38%(8 + 21p)). (80)

We note that Eq. (76) is a two-dimensional (#, §) non-
linear equation and may be viewed as the simplest
model equation for electrostatic drift waves in axis-
symmetric tokamaks. Detailed studies of Eq. (76) will
be reported in a future publication.

IV. NONLINEAR ION LANDAU DAMPING OF KINETIC
ALFVEN WAVES

As noted in Sec. I, the results obtained in Sec. II are
rather general and, therefore, are also useful for de-
scribing nonlinear processes associated with low-fre-
quency wave heating. To illustrate this potential appli-
cation, we consider nonlinear ion Landau damping of the
mode-converted kinetic (shear) Alfivén waves.'! The
major difference between our work and Ref, 16 is that
we include the diamagnetic drift effects. Another mi-
nor difference is that no small ion-Larmor-radius ex-
pansion is taken here.

For the sake of simplicity, we adopt the WKB descrip-
tion, Eqs. (49) and (50), and ignore the wavenumber mis-
matchand geometrical effects. Furthermore, F, is taken
to be Maxwellian and, for the present purpose, we canas-
sume a weak-turbulence subsidiary orderingas wellas ig-
nore the compressional Alfvén perturbations 6A,=0 [i.e.,

B = (plasma pressure/magnetic pressure) < 1]. The rele-
vant equations, thus, are

SF(K) = —(q/ T)6% (K)F, + 8H,(K) exp (ik - vXe,/RQ), (81)
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and

(wg - kuvn)DHO(k) = ((I/T)(w + w*)kFOOZ(k)JO(‘Y)

~i(c/B) 2, [SL(&'W,(v"VOH k")
I T
=k

x (kxXk')-e,], (82)

where 6L(k)= 6&(k) - v,04,(k)/¢c, wy=Fk,cT/eBL,, L
=|dInN,/dx|, x is the nonuniformity direction, and
temperature gradients are ignored. Expanding 6H,
=0HSY + 0H® + SH{® + - . ., we have, in the linear

order,
SHO (k) = 2 “"—*-‘1;-’—*—)3 F LM () . (83)
- Ry
To calculate 0H{?'® we let (v, ,k) and (w,.,k’) be the

normal modes; while (w,=w, ~ wy ,q=k -k’) is the
virtual or quasimode. Also, we have in mind

wol ~[avvi| ~ [, | 0 <[ waq | ~| 0 e [ <<[Fons B | -
(84)

Let us now calculate the g-mode response. For the

ions, we find, noting Eq. (84), that

SHZ(Q) = [0/ (g — 0,0, )10P 68 (k)0 (K W o () o(¥" ) »
(85)
where
6B, = i(Qy/ w3k XK) - ,], (86)

and 6§ =ed%/T,. In deriving Eq. (85), we have ob-
served that | 63 | ~| wdA,/ck, | for the k and k' modes.
As to electron nonlinearity, it is O(|w/wa,|,) smaller
and, hence, negligible. Furthermore, for g «1, we
have |w,| <|q,V, | and the g-mode response is pre-
dominately electrostatic. Here, V, is the Alfvén
speed. The quasineutrality condition then yields

881 = — (F/ T 0P 83 (k) 83(K) , (87)
where
F(k k') =27 fo T 0,00, P Y WV OF i)
=T (P Wo(¥ Wol¥ D, » (88)
T, =I(b)exp(~b,), (89)

Ye=4,0,/8,; and b,=¢%p5/2. Equations (83) and (87) then

give 0H{(q).
For the k mode, the ion nonlinear response can be
shown to be

12 __,__(.L’*
m(k)—laP P 63 (k")]| 58 (K)F (w—q..v..).

X[T2r Wo(¥) = F {7 Wo(¥')/ Toql - (90)

From Eq. (90), we can readily calculate on{> (k).
Meanwhile, the electron nonlinearity, again, is found
to be O(|w/wy,|,) smaller. Substituting on{*’(k) and the
linear response into the quasineutrality condition and
parallel Ampere’s law, it is straightforward to derive
the following nonlinear dispersion relation:
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pw=- et 21 (- %) (et )
x| 6P 63 (k") [ G(k, k'), (91)
where D,(k) is the linear dispersion relation given by
Dy(k) =(T+ wao/ @)1 = Ty + (1 - wyo/w)y
[1- w1+ wy/w)(1 = T )/ (B, Voo, )?], (92)
Gk, k") =(T5ly Moly' ), = F2/Tq, (93)

Z,=Z(w,/|q.|v,) with Z being the standard plasma
dispersion function. In the low-g limit of interest
here, |wy,/k,V, | <1, and assuming w, =w,, + iw,, with
|wi/w,| <1, Eq. (92) gives the known result that there
exist two branches of waves; the drift waves with

“’n.aﬁwnxrog/[l"'f(l - rok)]s (94)
and the kinetic shear Alfvén waves with
wft,A =~ (&, VA)2[1 +‘ T(1- rog)]kipz,/T(l - rog) . (95)

We note that nonlinear ion Landau damping of the drift
waves, as described by Eq. (91), has previously been
investigated.'” Concentrating on the kinetic shear-
Alfvén waves, we find

(&) - (Way = W),
Welea 27(1=Ty )1+ 7(1-T,)]

XG(k, k')(Im Z,/ | g,v, )| 88(k")6B,P.  (96)

Comparing the w; given by Eq. (96) with that of Ref.
16 (which, we recall, does not include the w, effects),
we find the present parametric-decay growth rate is
larger by a factor of O(|wx,|/|q,v;])>1. Furthermore,
noting that Im Z, ~| ¢, | v,76(wy - w,), G(k,k’)>0, and
Wy < (Wap — Wyy) < (k) — &,); hence, the daughter wave,
(wy, k), has a smaller &, but the same w as the pump
wave (w,.,k'). This is qualitatively different from the
results of Ref. 16, where w,x(wy —w,). In fact, as
might be expected, one can show that the results of Ref.
16 are valid for |w,, | <|q,v,]; i.e., in the opposite
limit.

Finally, we briefly discuss the implication of the
present results on the shear Alfvén wave heating
scheme. Since the pump wave (i.e., the mode-con-
verted kinetic shear Alfvén wave) has k.p, ~0(1) and
k0, ~0(p,/a) <1 with a being the tokamak minor ra-
dius, we have w, = |kXk'-e, Fu (ksk,F and, hence, non-
linear coupling becomes appreciable for k0, ~ 0(1)
>> k;p‘; that is, w;<0. Thus, our results suggest that
parametric decay through nonlinear ion Landau damp-
ing will in general be unlikely to occur.

V. CONCLUSIONS AND DISCUSSIONS

In this work, a systematic formalism for the nonli-
near interactions of microscopic low-frequency elec-
tromagnetic waves has been developed. This forma-
lism extends the linear gyrokinetic formalism of Refs.

1 and 2 into the nonlinear regime. The corresponding
nonlinear gyrokinetic equations, valid for general mag-
netic field configurations as well as the strong turbulen-
ce regime, are derived. Effects due to fully electro-
magnetic perturbations, finite Larmor radii, plasma
inhomogeneities, magnetic drifts, and magnetic
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trapping are retained. The results are, thus, ra-
ther general and should have wide application.

Note that it is straightforward to extend the treatment
to include collisional effects by retaining the Fokker-
Planck collision operator in Eqs. (7) and (15). As a
specific example of possible applications, we consider
axisymmetric tokamaks and explore the properties of
the nonlinear gyrokinetic equations in more detail via
the ballooning-mode representation. Furthermore, a
single nonlinear equation is derived for electrostatic
drift waves in the limit of adiabatic electrons and cold
fluid ions which retains the crucial features of toro-
idal geometry and nonlinear coupling and, therefore,
may be exploited as a useful model equation. On the
other hand, we have also applied the results to the
shear Alfvén wave heating scheme and considered the
parametric decay of the mode-converted kinetic

Alfvén waves via nonlinear ion Landau damping (ion-
induced scattering). Here, it is found that the dia-
magnetic drift effects not only enhance the parametric
growth rate but also modify the decay process quali-
tatively. That is, the daughter waves tend to have
smaller perpendicular (to B and the density gradient)
wavenumbers (i. e., smaller poloidal mode numbers for
tokamak plasmas) instead of frequencies as suggested
by uniform plasma calculations. This property, there-
fore, suggests that the mode-converted kinetic Alfvén
waves with small poloidal mode numbers will not, in
general, parametrically decay via nonlinear ion Landau
damping. Other possible channels such as resonant de-
cay to drift waves, of course, are not ruled out and
need to be investigated.

Let us comment on some other possible applications
of the general results obtained here. One possible
application is the following: by taking the limit of adia-
batic electrons and fluid ions, a sufficiently sim-
ple nonlinear equation may also be derived for the ki-
netic shear-Alfvén waves, and, hence, could serve as
a model equation for studying the nonlinear evolution
and associated transport of kinetic ballooning-mode
instabilities.'® Another interesting application is to
simulate plasmas employing the nonlinear gyrokinetic
equation, Eq. (48) or, more transparently, Eq. (50).
This application will further extend the gyrokinetic
simulation scheme initially proposed by Lee'® for elec-
trostatic waves in simple (slab) geometries to fully
electromagnetic perturbations in general plasma equili-
bria. The details of these applications, however, re-
main to be worked out.
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